THE ASTRONOMICAL JOURNAL

FT9B3AT.C .. 8B

VOLUME 88, NUMBER 9

FURTHER STUDIES ON CRITERIA FOR THE ONSET OF DYNAMICAL INSTABILITY IN

GENERAL THREE-BODY SYSTEMS

YVONNE J. PENDLETON AND DAvID C. BLACK
Space Science Division, NASA Ames Research Center, Moffett Field, California 94035
Received 7 February 1983; revised 23 May 1983

ABSTRACT

Results are presented from a variety of numerical experiments designed to further elucidate
conditions under which self-gravitating three-body systems become dynamically unstable. We
examined the stability of four types of orbital configurations: (1) circular, prograde, and co-
planar orbits, (2) circular, retrograde, and coplanar orbits, (3) circular, direct, and inclined
orbits, and (4) eccentric, direct, and coplanar orbits. Our experiments with circular, prograde,
and coplanar orbits corroborate the stability criterion proposed by Graziani and Black (1981)
as well as the generalized form of that criterion proposed by Black (1982). Our experiments
with retrograde orbits were limited to systems where the tertiary body was significantly less
massive than the binary bodies and in orbit about the binary as a whole (the so-called “outer
planet” configuration). These retrograde systems are less stable than their prograde counter-
parts. Our results indicate that orbital inclination does not significantly affect stability for
“outer planet” configurations, but that the stability of “inner planet” configurations, where the
tertiary is in close orbit about one member of the binary, is noticeably less so once the relative
orbital inclination > 50°. We find that the onset of dynamical instability is only weakly depen-
dent on the eccentricity of either the binary or tertiary orbit as long as the mass of tertiary is
comparable to the reduced mass of the binary. However, the dynamical stability of systems in
which the tertiary mass is either much greater or much less than the reduced mass of the binary
is a relatively strong function of orbital eccentricity.

SEPTEMBER 1983

I. INTRODUCTION

The question of whether a given three-body system
(hereafter referred to as TBS) is dynamically stable is
important for a wide variety of astronomical problems.
Although some progress on this question has been made
through the analytic studies of Szebehely and his co-
workers (e.g., Szebehely 1976; Szebehely and McKenzie
1977; Szebehely and Zare 1977; Szebehely 1980), those
studies did not provide a simple analytic criterion which
could be used to determine whether a given system
would be dynamically stable. Recently, Graziani and
Black (1981) advanced such a criterion based on results
from a series of numerical experiments. The Graziani-
Black (hereafter referred to as GB) criterion was that a
TBS was dynamically unstable if

A 3
(2 —A )3/2 ’ (l)

where 1 and A are dimensionless mass and geometry
parameters of a TBS given by:

(my + m;)

K> phehe = 0.175

= 2
u o) (2a)
and
A= 1R =Ry (2b)
R,+R,

The systems studied by GB were ones in which
m, = my<m,. The geometry parameters R, and R, are
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defined in Fig. 1. Also shown in Fig. 1 are two other
geometry parameters that are frequently used to charac-
terize TBS: the semimajor axis of the binary orbit (a,)
and the peristron distance (g,) of the tertiary body with
respect to the barycenter of the binary pair. The oper-
ational definition of instability used by GB is that due to
Laplace, viz. that one of the orbits develops clear (i.e.,
R 10 percent) secular trends or becomes erratic. The
term “instability” as used throughout the remainder of
this paper has this definition unless it is specifically stat-
ed otherwise.

The GB study was confined to values of u<1. Black
(1982) has shown that the GB criterion is in excellent
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FI1G. 1. Schematic representation of a coplanar three-body system as
viewed perpendicular to the orbital plane and when the bodies are in a
colinear configuration. This configuration serves to define the orbit
parameters typically used to determine whether such a system is dyna-
mically stable (see text for discussion). The center of mass of the
m, — m;, pair is denoted by the X.
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agreement with results from analytical studies of the
onset of instability in both the restricted and general
three-body problem for circular, prograde, coplanar or-
bits. This agreement supports the definition of  chosen
by GB (1 could also be defined in terms of a geometric
mean of m, and m;, but such a definition gives z==0 for
the restricted problem). We return to this point in Sec.
III. Black also proposed the following extension of the
GB criterion for values of 2> 1: a TBS is unstable if
3

__A_3 (3)
(2—4)

(m, and m, are always taken to be the binary pair in the
TBS with m, being the more massive member of the
binary). Equations (1) and (3) were derived from studies
of co-revolving, coplanar, circular orbits. But whereas
Eq. (1) was based on results from numerical experi-
ments, Eq. (3) was based primarily on the general for-
malism of Szebehely and Zare (hereafter referred to as
SZ). The primary purpose of this communication is to
report results from a series of numerical experiments
designed to examine the onset of dynamical instability
in prograde, coplanar, circular TBS as well as in systems
with either (a) retrograde, (b) inclined, or (c) eccentric
orbits.

pu>p,. =0.083

II. RESULTS

The results described here are from a series of numeri-
cal experiments on the evolution of TBS. The numerical
code employed in this work is a modified version of the
code due to Wielen (1964) (see GB for discussion of the
code). Input parameters are the mass and the initial po-
sition and velocity of each body. Two integrals of the
motion, total energy and angular momentum, were con-
served to at least one part of 10'° during an experiment.
All experiments were initiated with the three bodies in a
colinear configuration (see Fig. 1).

Our experimental procedure was to fix 4 and vary 4,
thereby locating a run of critical values of 4 as a func-
tion of 2. Experiments were run 1001000 orbits of the
longest period body, or until the existence of orbital in-
stability was evident. Results are discussed for four gen-
eral classes of experiments: (a) those with coplanar, di-
rect, circular orbits, (b) those with coplanar, retrograde,
circular orbits, (c) those with inclined, direct, circular
and (d) those with coplanar, direct, elliptic orbits.

a) Systems with Coplanar Direct Circular Orbits

Shown in Fig. 2 are theu — 4 loci of several selected
experiments. The u — A values pertain to the initial con-
figuration of a system. Closed (open) symbols indicate
systems which were found to be stable (unstable), while
systems that showed marginal signs of instability are
indicated by stippled symbols. Only those with the high-
est (lowest) A value which were unstable (stable) at the
indicated u value are plotted. We studied three generic
types of TBS. In the nomenclature of Szebehely these
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FIG. 2. A plot of u~A (see text for definition of the dimensionless
parameters) as defined by (1) the Graziani-Black (1981) three-body
stability criterion (solid line), and the Black (1982) general three-body
stability criterion (dashed line). Results from numerical experiments
presented here as @, B, and A represent, respectively, outer, inner,
and satellite configurations. Open, stipple, and closed symbols indi-
cate, respectively, unstable, marginally unstable, and stable systems.

are: outer planet, inner planet, and satellite. Outer plan-
et refers to systems where m,<min (m,m,), inner planet
refers to systems where m,<m,<m,, and satellite refers
to systems where m;>max (m,,m,). Thus, satellite sys-
tems have u>1, whereas inner and outer planet systems
have u<1. The symbols @, B, and A, respectively, are
used to designate whether a system was outer planet,
inner planet, or satellite.

The behavior of systems with <1 is generally in ex-
cellent agreement with that expected on the basis of the
GB criterion. Our results support the findings of Black
(1982) that a single stability criterion may be used for
both the inner and outer planetary systems. Perhaps the
best evidence for this is the data shown for u = 0.5. Both
types of systems were stable at A = 1.27 and unstable at
4 = 1.24. Agreement between our results and those of
GB is expected since both studies used modified ver-
sions of the same code. However, this study provides a
more comprehensive data base against which the GB
criterion can be tested because many more values of 4 in
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in the range of 1.0<4 < 1.4 were considered than was the
case in the GB study.

Our results for x> 1 provide a test of Black’s pro-
posed extension of the GB stability criterion. The high-u
systems studied here are in very good agreement with
that extension (the dashed line in Fig. 2). Our resolution
in 4 is reasonably good for these experiments, particu-
larly for the higher values of x4 studied here. We did
examine a system (¢ = 5.0, 4 = 1.43) which would be
stable according to the criterion given by Harrington
(1977) but unstable according to the extended GB crite-
rion; the system was unstable.

TBS experiments with > 1 show a qualitative simi-
larity to those with u < 1. The transition from stability
to instability for systems with u>1 (and u<1) is very
pronounced often leading to ejection of one member of
the TBS. Systems with z ~ 1 tend to manifest instability
in a much less pronounced way (e.g., ejection rarely oc-
curred) than do systems with z>1 or u«1.

b) Systems with Coplanar, Retrograde, Circular Orbits

We tested the effect of retrograde binary orbits on the
stability of the outer planet configuration for a TBS with
m, =m, =0.5Mg and my = 107°M atu — A values
which produced stable results with corresponding pro-
grade motion. Our results show that higher 4 values are
required to establish orbital stability in the retrograde
case.

For example, a prograde 1 = 0.5 system is stable at
A = 1.27 while the same system is unstable if the binary
orbit is counter that of the tertiary. A physical explana-
tion for this result is that the retrograde system has less
angular momentum than the prograde system if all oth-
er parameters are the same. The distance between the
bodies, hence 4, must be increased in the retrograde
configuration to achieve the angular momentum equi-
valent to the prograde system at smaller values of 4.
Due to the nature of this study, ours is a sufficient, but
not necessary condition for instability. Our findings
support those of SZ that the sufficient condition for sta-
bility occurs at larger 4 values in retrograde systems
than it does in their prograde counterparts.

¢) Systems with Inclined, Direct, Circular Orbits

In order to test the dependence of orbital stability on
the relative inclination of the orbital planes, a study of
the inner and outer planet cases was made. This aspect
of our experiments was confined to equal mass binary
systems (m, = m, = 0.5M,) where the “planet” had a
mass of 1073 M. Relative inclinations of 25°, 50°, 75°,
and 90° were considered with initial 4 — 4 values that
ensured stability in the coplanar, direct, circular config-
uration. Our results show that orbital inclination has a
strong effect on the inner planet model, with the onset of
instability occurring between 50° and 75°. In the outer
planet configuration no instability was detected, even
near 90°.
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d) Systems with Coplanar, Direct, Elliptical Orbits

Our experiments mainly studied the effect of eccen-
tric binary orbits on the orbital stability of a planetary
body in the inner planet configuration. The initial pa-
rameters provided for elliptical movement of the binary
and circular movement of the planet about the primary
component. The binary pair was initially at apogee. We
started at values of A which give stable results in the
circular case and tested eccentricities of e = 0.2, 0.4, and
0.6. The value of 1 was varied by increasing the stellar
mass ratios while keeping the planetary mass fixed at
107> M. Qualitative results demonstrated that, for
any given stellar mass ratio (fixed 1), 4 must increase as
e increases to maintain stability. Furthermore, for fixed
values of e we find that the critical value of A decreases
as u decreases. Comparing the results of SZ with ours,
we found a more pronounced effect of eccentricity on
the critical value of A for a given value of 1. For exam-
ple, their study of the triple star case (u = 1) results in a
change of 0.12 in the critical 4 value between the e =0
and the e = 0.5 cases. We found an increase in the criti-
cal 4 value of at least 0.39 for u = 0.1 between thee =0
and the e = 0.6 cases. We return to this point in Sec. III,
emphasizing in a more general way the effect of orbital
eccentricity on stability criteria.

III. DISCUSSION

The results presented here for circular, direct, co-
planar orbits verify the criterion for dynamic instability
in TBS with <1 as given by Graziani and Black (1981).
They also verify the proposed extension of that criterion
(Black 1982) to systems with u>1. Our experiments
with retrograde orbits were confined to cases where the
total mass of the binary system, m, 4 m,, was 1M, and
the mass ratio m,/m, was 1.0, 3.0, and 5.0. In all cases,
the mass of the tertiary body, m,, was 10'3M®. The
orbits of these “outer-planet” cases were initially circu-
lar and coplanar. We find that retrograde systems of this
type are less stable than their prograde counterparts,
i.e., stability requires a higher 4 value for retrograde
systems than for prograde systems with identical u val-
ues. Hunter (1967) and Henon (1969) found retrograde
systems to be more stable than their prograde counter-
parts for cases where m;>m, + m,, i.e., the so-called
“satellite” case. Because they considered a different
type of TBS there is no disagreement between their re-
sults and ours. However, Harrington (1972, 1977) did
investigate the effects of retrograde motion for the outer
planet case and concluded that retrograde systems were
more stable than their prograde counterparts. A close
inspection of Harrington’s results, particularly his 1977
paper where he did virtually the same experiment as we
did with m, = m, and m, = 10~>M, is instructive. Ta-
ble I in that paper for the e = 0 outer-planet cases for
corevolving (I =0) and counterrevolving (I = 7) sys-
tems shows that the lower limit for ¢,/a, is higher for the
I = 1 case than for the I = 0 case. That is, the retro-
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TABLE L. Values of X (e,, e,)/X, for various values of the eccentric-
ities and for three different values of f,: f, = 10? [Table 2(a)], f, = 2
[Table 1(b)], and f, = 10~? [Table 1(c)].

Table 1(a)

e, 0 0.2 0.4 0.6 0.8
N
0 1 1 1 1 1
0.2 1.09 1.09 1.09 1.09 1.09
0.4 1.58 1.58 1.58 1.58 1.58
0.6 2.34 2.34 2.34 2.34 2.34
0.8 3.26 3.26 3.26 3.26 3.26
Table 1(b)

e, 0 0.1 0.2 0.5 0.8
€
0 1 1.01 1.03 1.19 2.31
0.1 0.92 0.93 0.95 1.09 1.41
0.2 0.87 0.88 0.89 1.02 1.31
0.5 0.83 0.83 0.85 0.94 1.15
0.8 0.88 0.88 0.89 1.00 1.13
Table 1(c)

e 0 0.2 0.4 0.6 0.8
€
0 1 4.2 28 128 471
0.2 0.83 35 24 106 391
0.4 0.71 3.0 20 91 334
0.6 0.63 2.6 18 80 294
0.8 0.56 23 16 71 262
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grade system is /ess stable than its prograde counterpart,
which is what we find. The agreement between Harring-
ton’s work and our own is in a relative sense only; we
find that higher g,/a, values are required for stability.
Harrington’s other cases do seem to show that, for sys-
tems with eccentric orbits, retrograde orbits are more
stable. We did no experiments of that type and are there-
fore unable to affirm experimentally this apparent re-
versal in relative stability.

Our experiments on the effects of relative orbital in-
clination in TBS show that if the members of the binary
system have comparable masses, then inclined orbits are
not significantly less stable than are coplanar orbits. If,
however, the members of the binary system are of une-
qual mass, the inclined orbits tend to be significantly less
stable than their coplanar counterparts. In cases where
one member of the binary has a mass comparable to that
of Jupiter we found clear signs of instability occurring
when the relative inclination of orbital planes exceeds
~50°. It is of interest to compare our results on the sta-
bility of TBS with inclined orbits with the findings of
other investigators. Hunter (1967) found that the more
inclined the orbits in models of the Sun-Jupiter satellite,
the more stable they were. Harrington (1972) found that
there was no dependence of instability on the relative
inclination of orbits for a system where m, = m, = m,.
As we consider only the so-called “inner” and “outer”
planet cases, our results cannot be directly compared
with those of Hunter. Although Harrington used differ-
ent relative masses than we did in our experiments, close

1418

examination of the details of the two experiments does
not indicate an inconsistency in the results. Harrington
considered relative inclinations of 0°, 45°, 90°, 135°, and
180°, or 0°, 45°, and 90° if one considers only prograde
motion. In contrast, we considered relative inclinations
of 0°, 25°, 50°, 75°, and 90°. Harrington found that sys-
tems with relative inclinations of 45° were no less stable
than coplanar (i = 0°) systems. Our results for the outer-
planet case extend this result to / = 75°. We do find evi-
dence that inner-planet systems with /> 50° are less sta-
ble than their coplanar counterparts. Because of
differences in resolution in inclination angles between
our experiments and those of Harrington, our results are
not inconsistent with his.

As noted in the previous section, our experiments
with TBS in which a relatively massive tertiary body is
in orbit about an eccentric binary, show that the critical
A value for such systems is sensitive to the eccentricity
of the binary orbit. Given the fact that most stellar TBS
have eccentric orbits, we consider here the effects of or-
bital eccentricity on the onset of instability in more de-
tail.

Using the approach of SZ, the following equation can
be used to determine the critical value of A for a pro-
grade TBS:

[1 +f(mi,e2)x—I] [1 +g(m,~,e1,e2)x—l/2]2
= h(m;,e5S. )x~ 1, @

where e, and e, are, respectively, the eccentricity of the
binary and tertiary orbits,

flm,,es) = ms(m; + my)(1 — e,) ,

(4a)
mum,
172
glm;.epe,) = My | It e ZnS ]
my (my + m,)
1—e® 1172
><[ & ] , (4b)
1+e,
and
h (mi’eZ’Scr)
6
=( 2 )sc, (rm, & m; + m;) [ ! ] (4c)
243 mmym, + m’m? L 1+e,

The parameter X = ¢q,/a, = (R3/R,) — m,/(m, + m,)
and can thus be used to determine 4. S, is determined
solely by the masses in a TBS (see SZ for details). In
general, one must solve a quintic equation to determine
S... It should be emphasized that although Eq. (4) is
based on approximation of the general three-body inter-
actions by two-body interactions and is thus not valid
when e,~1 or when e,~1, it does provide insight into
the effects of nonzero e, and e, on the onset of instability.

Equation (3) admits closed form solutions only when
either e, or e, is unity.

x(1,e;) = h(m; e, ) — f(m;,e,) (5)
and

X(e1’1)= {[h(m,.l,Sc,)]l/z—g(m,,el,l)}z. (6)
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The critical x value, x,, for circular orbits satisfies

(1+foxg N1+ goxg /2 = hoxg ', (7)
where we have set

Sf(m;,0) = fo,

8(m;,0,0) = g,
and
h (mi’O’Scr) = hO
for notational simplicity. Further,
fo& = [1+ms/(m, + m,)]'"*>1
which coupled with the definition of f; indicates that if
Jfo>1then g,<1 and conversely. We can thus character-
ize solutions to Eq. (4) in terms of whether fy>1, ~1, or
<1. The physical quantity corresponding to f;, can be
found by recalling that f,=m;/u,, where ug
= m,m,/(m, + m,) is the reduced mass of the binary
pair. Thus the conditions f,>1, ~ 1, €1 correspond, re-
spectively, to the physical conditions m;>ug,m;~pg

and m;<ug.
The behavior of systems for which f,> 1 is given by

xleper) (146 foxo) (8)
Xo - (1 +e,) .

Equation (8) is valid as long as

(1 —e))(1+ e2)1/2f(2)
2[1 4+ my/(m, + my)]'*(1 — e})'/?
(i.e., as long as . ’
Soll — e))/x(er,en)>280(1 — €1)'/2/[(1 + ex)x(eyer)]'?).

Note that the ratio x(e,,e,)/x, is independent of ¢, and
that it has a minimum value of ~1 — x,/4f, at
& = [1 + xo/f5]"? — 1~x,/2f,. Once e, > &, the ratio
x(ey,e,)/x, increases rapidly with increasing e,. The be-
havior of TBS in which f,«1 is given by

xllz(el’e2)<

xleves) . {1+ a(l— (1))}’ o)
%o l+e, ’
where
=&=i 1+m3/(m1+m2) 1/2>1
x(l)/Z fz) xo .

Both Egs. (8) and (9) have a (1 + ¢,)~ ! dependence. As
expected, there is a strong dependence of x(e,,e,)/x, on
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e; [Eq. (9)] and on e, [Eq. (8)] in prograde TBS where
ms>up. The behavior of xy(e,,e,)/x, for f, = 10> and
Jfo = 1072 is shown in Tables 1(a) and 1(c), respectively.
SZ have obtained solutions to Eq. (4) for the case where
m, = m, = m,(i.e., my;~pg). Those solutions are given
in Table II and Fig. 2 of their paper as well as in Table
1(b) of this paper.

It is apparent from Table I and the above discussion
that the critical g,/a, of 4 values for the onset of insta-
bility in prograde TBS can be significantly increased if
either m;>uy or my<u . However, for TBS in which
m,~u g (more precisely for TBS in which 0.3 S f,  10)
there is only relatively minor change (~25 percent) in
the critical value of 4 even for large values of e, and/or
e,. The eight triple star systems discussed by Black
(1982) have f, values ranging from a high of 5.5 ({ Aqr)to
alowof0.35 (4 Tau). Consequently, the stability of those
systems should be reasonably well described by the GB
criterion for circular orbits (coincidentally e; = e,~0
for A Tau). This further supports Black’s (1982) assertion
that the observed absence of stellar triple systems with
q,/a,~5 is due to instability rather than cosmogonic
(i.e., formation) processes.

It is important to recognize that the question of what
conditions produce a dynamically unstable three-body
system is dependent to some extent on the nature of the
system. For example, Hunter (1967) states that retro-
grade Jupiter satellites are more stable than their pro-
grade counterparts if the orbits are coplanar, but that
prograde satellites become more stable than their retro-
grade counterparts for orbits inclined at angles R 45°.
Similar qualitative differences are found for the so-
called inner and outer planet cases. However, on a quan-
titative level it appears that over a very wide range of
relative masses and orbital parameters (e.g., inclination,
eccentricity) one can use the simple criterion given by
Graziani and Black (1981) and by Black (1982) to deter-
mine whether a given system would be dynamically un-
stable.

We wish to acknowledge the many contributions by
Dr. Szebehely and his co-workers to the three-body
problem. We are grateful for their insight into, and valu-
able constraints on, the essential nature of this problem.
We also appreciate many helpful discussions with Drs.
F. Graziani and T. Ackerman. This paper has benefited
from a careful and thoughtful review by an anonymous
referee whom we wish to thank.
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